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ABSTRACT

Starting from a microscopic Hamiltonian defined on a semi-infinite cubic lat-

tice, and employing a mean-field approximation, we derive the surface parameters

relevant for wetting in confined ternary mixtures. These are found in terms of

the microscopic coupling constants, and yield a physical interpretation of their

origins. In comparison with the standard expression for the surface free-energy

density we identify several new terms arising from the derivation. We further dis-

cuss the influence of the surface parameters on a predicted unbinding transition

in a mixture of oil, water and amphiphile demonstrating that existing results are

robust to the addition of the extra surface terms.

KEY WORDS : complex fluids; lattice models; mean-field theory; wetting tran-

sitions.

2



1. INTRODUCTION

A popular starting point for the study of wetting or unbinding in both simple

and complex fluids is the appropriate Ginzburg-Landau (GL) theory. In particu-

lar, for the case of wetting of a substrate in the plane z = 0 by an adsorbate, the

GL theory is based on a surface free-energy functional of the form

HGL[φ] =
∫
r≥0

ddr {LV [φ,∇φ, . . .] + δ(z)LS[φ, . . .]} , (1)

where φ(r) is the bulk order parameter, and d is the spatial dimension. For

the case of simple fluids φ represents a local density, and LV ≡ LV [φ,∇φ] =

K(∇φ)2/2+f(φ) where K > 0 and f(φ) is a double-welled bulk free-energy den-

sity with two equal minima at coexistence. In this case the substrate-adsorbate

energy is usually accepted to take the form

LS ≡ LS[φ1] = −h1φ1 − gφ2
1/2, (2)

where φ1 = φ(y, z = 0) is the surface order parameter, h1 is the surface field, and

g is the surface-coupling enhancement [1,2]. The motivation for this expansion

is not clear a priori since in general φ1 is not anticipated to vanish on approach

to the critical temperature Tc, however derivations based on lattice mean-field

theory broadly support the expansion [3].

In this paper we are primarily interested in ternary mixtures of oil, water and

amphiphile [4]. Such mixtures are predicted to display a wide range of different

structures, with bulk mean-field phase diagrams capturing many of the features

found in experimental studies. For example, at low amphiphile concentrations a

monolayer of surfactant molecules is formed at the oil-water interface leading to

a decrease of the surface tension. As the amphiphile concentration is increased

a number of distinct structured phases are possible, such as the lamellar phase

which consists of regular one-dimensional arrays of monolayers separated alter-

nately by oil-rich and water-rich domains. If this array is disordered one instead

obtains the microemulsion phase. One can use a single scalar order parameter

model of the form of Eq.(1) to model these fluids, with the order parameter φ(r)

interpreted as the local concentration difference between oil and water. Due to

the presence of small, or even negative surface tensions in ternary mixtures the

simple model discussed above can become unstable so that higher order gradient

terms are required leading to an expansion for LV of the form

LV ≡ LV [φ,∇φ,∇2φ] = c(∇2φ)2 + g(φ)(∇φ)2 + f(φ)− µφ, (3)

where the amphiphile degrees of freedom have been integrated out but with their

properties influencing c, f and g. The bulk free-energy density f(φ) has three
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minima corresponding to homogeneous oil, water, and microemulsion phases,

while µ is the chemical potential difference between oil and water. From scattering

experiments it is known that g(φ) is positive in the pure oil and water phases,

but may be negative in the microemulsion phase. In contrast c is always positive,

stabilizing the system, and for simplicity may be assumed constant. For studies

of confined ternary mixtures the substrate-adsorbate energy density has been

proposed to take the form (employing conventional notation for ternary mixtures)

LS ≡ LS[φ1,∇φ1] = µsφ1 + ωsφ
2
1 + gs(∇φ1)

2, (4)

with ∇φ1 = ∇φ|z=0+ the local gradient of φ [5,6]. Here the local surface field (or

chemical potential) µs describes the preference of the wall for one of the phases,

while ωs is the analogue of the standard surface enhancement term. The gradient

term (with coefficient gs) is required for correctly determining the wall conditions

associated with minimizing the GL free energy. The main purpose of this work is

to test the validity of Eq.(4) by deriving connections with the parameters of an

appropriate lattice model. In particular we seek to find a physical interpretation

of the parameter gs.

The remainder of the paper is arranged as follows. In the next section we

calculate the surface contact energy in terms of the microscopic coupling con-

stants of a semi-infinite lattice model, generalizing earlier work [7] to arbitrary

dimensions and providing a more detailed discussion of the origins of the surface

terms. Our analysis leads to extra terms not accounted for in Eq.(4). In Section

3 we discuss the influence of the extra terms on predictions of a wetting transition

in a ternary mixture and summarize our main results.

2. DERIVATION AND INTERPRETATION OF SURFACE PARAM-

ETERS FOR TERNARY MIXTURES

We base our study on a simple three-component lattice model which has

molecules of either oil, water, or amphiphile located on each site of a d-dimensional

cubic lattice. The properties of the amphiphile are introduced via a term which

reduces the energy of configurations in which an amphiphile molecule sits between

oil and water, but increases the energy in configurations in which the amphiphile

sits between two oil or water molecules. The model is most conveniently for-

mulated as a spin-1 magnetic system via a nonlinear variable mapping (see for

example [4] for full details). In this formulation the Hamiltonian for the bulk

system, ignoring surface effects, is

HB = −∑
〈ij〉

[
JBSiSj + KBS2

i S
2
j + CB(S2

i Sj + SiS
2
j )

]
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−∑
i

(HBSi −∆BS2
i )− LB

∑
[ijk]

Si(1− S2
j )Sk, (5)

where the spin variable Si takes the values 1, 0, and −1, representing the water,

amphiphile, and oil molecules respectively. The parameter LB < 0 is the strength

of the amphiphilic interaction, while the coupling constants JB, KB, CB, HB, and

∆B can be found in terms of the chemical potentials of the three components and

the various two-particle interactions [4]. The notation 〈..〉 indicates sums over

nearest neighbour sites, and [. . .] denotes sums over three linearly adjacent sites.

In our analysis we will assume a balanced system in which there is symmetry

between the oil and water phases, so that the symmetry breaking fields CB =

HB = 0.

The Hamiltonian HB is an extended version of the familiar Blume-Emery-

Griffiths (BEG) model with the last term in (5) providing the only difference

with the standard BEG model [8]. To further extend the model to include surface

effects we need to add an extra term HS describing the interactions between spins

lying on the surface

HS = −∑
〈ij〉

[
JSSiSj + KSS2

i S
2
j + CS(S2

i Sj + SiS
2
j )

]

−∑
i

(HSSi −∆SS2
i )− LS

∑
[ijk]

Si(1− S2
j )Sk, (6)

so that the total Hamiltonian for the system is H = HB +HS. In HS the sums

only involve sites on the surface hyperplane, i = 1 say. In general the surface

couplings will differ from their bulk counterparts, and so the fields CS and HS

will not be zero despite the assumed symmetry in the bulk.

We employ a lattice mean-field approximation in order to calculate the con-

tribution to the mean-field free energy due to the presence of the surface [9]. In

this approach the system is described by the set {Mi, Qi; i ≥ 1} where i is used

to label the (d− 1)-dimensional hyperplanes parallel to the surface. Specifically

Mi = 〈Sj〉 and Qi = 〈S2
j 〉 are the thermodynamic expectation values of Si and S2

i

respectively. Note, the averages are taken over all sites j in hyperplane i, so that

the subscripts of M and Q refer to the appropriate hyperplane, whereas the sub-

script of S refers to the lattice site. Within this approximation the excess surface

contact energy that we seek, FS, can be found as the difference in free-energy of

the two situations shown schematically in Fig. 1. In case (I) one considers the

free energy for the semi-infinite system with Mi = M0 and Qi = Q0 for all i > 1,

where M0 and Q0 represent the values for a typical homogeneous solution. In case

(II) one determines the free energy of a semi-infinite system with bulk couplings
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Figure 1: Schematic representation of the two systems discussed in the main text.

Solid and dashed lines correspond to bulk couplings (JB, KB, . . .) and surface

couplings (JS, KS, . . .) respectively, while the index i identifies the various (d−1)-

dimensional hyperplanes.

everywhere and with dangling bonds connecting the surface spins to spins just

outside the surface. Following this approach yields

FS(M1, Q1,M0) = −HSM1 + (∆S −∆B)Q1 −
(

2d− 2

2
JS − 2d− 1

2
JB

)
M2

1

−
(

2d− 2

2
KS − 2d− 1

2
KB

)
Q2

1 − 2(d− 1)CSM1Q1 (7)

+LBM0(1−Q1)M1 − (d− 1)(LS − LB)(1−Q1)M
2
1 .

In order to connect this expression to the corresponding energy density in the

continuous GL theory it is appropriate to rewrite FS purely in terms of M1 and

differences of Mi’s involving the surface hyperplane i = 1, which can be trans-

formed to local gradients when going to the continuous GL theory. This can

be achieved by solving self-consistency equations in the standard mean-field ap-

proximation (details are given in [7,9]) leading to an expansion for Q1 in terms

of the surface order parameter M1 and the local difference ∆M1 ≡ M2 − M1.

Substituting into (7) leads to the appropriate expansion for the surface contact

energy

FS(M1, ∆M1) = µsM1 + ωsM
2
1 + g1∆M1 + gs(∆M1)

2 + k1M1∆M1, (8)

which defines the various surface parameters. Note the explicit M0 dependence

has been adsorbed into the definition of the surface parameters. From (8) we
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can derive the corresponding GL theory energy density to first approximation by

Taylor expanding M2 around M1, and associating M with the order parameter

φ. This indicates that the substrate-adsorbate energy proposed in (4) should be

replaced by the more general form

Ls [φ1,∇φ1] = µsφ1 + ωsφ
2
1 + g1(∇φ1)·n + gs(∇φ1)

2 + k1φ1(∇φ1)·n, (9)

where n is the outwardly directed surface normal. Here we have naively assumed

that the surface parameters are not affected by the transformation from lattice

mean-field theory to the continuous GL theory. In practice one does not expect

this to be true, with the parameters in Ls differing from those in FS by terms

proportional to the difference in phase space from the bulk critical point, however

such modifications are not relevant for the observations discussed below.

The most notable result of our derivation is the presence of two additional

terms in Ls, one linear in ∇φ1, and one cross term of the form φ1∇φ1, neither of

which can be ignored by simple symmetry considerations. The coefficients of both

terms (g1 and k1 respectively) are found to contain contributions proportional

to the surface field and enhancement of the amphiphile molecules. The local

chemical potential µs is typically dominated by the surface field HS, and a term

proportional to the bulk coupling constant LB. The presence of this term can be

anticipated from the penultimate contribution in (7), and is directly attributable

to the property of the amphiphile to locally self organize the system (for a non-

amphiphilic ternary mixture, or a mixture with a very weak amphiphile LB ≈
0 and so this contribution would vanish from µs). The enhancement term ωs

accounts for the interactions of all molecules (both oil or water, and amphiphile)

at the surface and their entropy (i.e. missing neighbours), which in general are

different as compared to the bulk. The origin of gs is one of the main goals

of this work, with earlier studies choosing to interpret gs as the local chemical

potential of the amphiphile [5]. While a contribution of this form (proportional

to the effective surface field ∆S −∆B) is indeed found, an additional term is also

present and is related to the difference between the interaction couplings (being

proportional to (2d− 2)KS − (2d− 1)KB). Thus, in general, gs, g1 and k1 all act

both as a surface field and surface enhancement for the amphiphilic molecules.

Full expansions for all of the surface parameters in d = 3 are given in [7]. We

conclude this section by considering two special cases in further detail.

Simple fluid limit : Firstly we consider the limiting case of a simple fluid

aiming to recover known results for the surface field and enhancement. In this

case the couplings K, C, ∆, and L in the bulk and surface are identically zero so
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that the total Hamiltonian for the system is simply

H = −∑
〈ij〉

JBSiSj −
∑
〈ij〉

′
JSSiSj −

∑
i

′
HSSi, (10)

where the primes on the last two sums indicate that only spins in the surface

hyperplane are included. As expected the variables Qi, which are directly related

to the profile of the amphiphile concentration, drop out of the results. Only the

terms µs and ωs are found to be non-zero; since we have reduced the problem to

the case of a simple fluid we revert to the notation of (2) so that h1 = −µs and

g = −2ωs are given by

h1 = HS , g = (2d− 2)JS − (2d− 1)JB. (11)

These findings are in agreement with earlier lattice mean-field results [3], provid-

ing a useful check on the consistency of our approach.

Symmetric limit : As noted earlier there are two symmetry breaking surface

fields in the model, HS and CS. Considering the symmetric limit where HS =

CS = 0 yields many simplifications, and helps to identify the contributing factors

to the various surface parameters. As discussed above µs does not vanish in

the symmetric limit but is proportional to LBM0 with a sign dependent on the

particular homogeneous phase assumed in the hyperplanes near the surface. The

enhancement ωs is qualitatively unchanged in this limit as anticipated for a surface

enhancement. In contrast g1 vanishes indicating that this term is completely

induced by the symmetry breaking fields, indeed one can further show that for

any given HS one can find a CS ∝ −HS which yields g1 = 0. Finally, both gs and

k1 are of the form a∆(∆S −∆B)+ aK [(2d− 2)KS − (2d− 1)KB] with appropriate

constants a∆ and aK in each case. Thus both terms play the role of surface field

and enhancement for the amphiphilic molecules independently of the symmetry

breaking fields.

3. DISCUSSION AND CONCLUSIONS

In the previous section we showed that the assumed GL theory substrate-

adsorbate energy LS given by (4) should more generally be replaced by (9). Thus,

we are naturally led to enquire how important the extra terms in Ls are for

predictions of wetting behaviour. To this end we have reanalyzed a recent study of

wetting of the wall-microemulsion interface by the water rich phase in a balanced

ternary mixture [6,10]. In that study a mean-field analysis predicted a rich surface

phase diagram containing first-order and continuous (critical) wetting transitions,

with the critical phase boundary given by a straight line in the (µs, ωs)-plane. The
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parameter gs was found to have no qualitative effect with only minor quantitative

differences in the cases where gs > 0, gs = 0 and gs < 0. Encouragingly, repeating

this analysis with the two extra surface terms included also only leads to minor

quantitative changes in the location of the phase boundaries (see [7] for numerical

details). The general qualitative features of the phase diagram, including the

straight critical boundary all remain. The fact that the effect of g1 and k1 is

similarly limited as that of gs may be connected to the similar origins of the

three terms as discussed in Sec. 2. Should this be the case one can reasonably

anticipate that the additional two terms will not play a relevant role in the study

of interfacial behaviour in confined ternary mixtures whenever gs is found to be

insignificant.

In conclusion, we have calculated the surface contact energy FS for a semi-

infinite mixture of water, oil and amphiphile using a simple mean-field approx-

imation based on a microscopic lattice model. We have shown that FS can be

written as an expansion in powers of the surface order parameter M1 and the

local difference ∆M1. Our calculation suggests that two additional terms should

be added to the standard GL surface free energy density Ls. The coefficients of

these two terms, along with the parameter gs, are interpreted as combinations of a

local chemical potential and surface enhancement for the amphiphilic molecules.

On the basis of this interpretation, in combination with the study of a particular

unbinding transition in a ternary mixture, we believe that the two additional

terms will only be important if gs is also qualitatively relevant.
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